Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 94
1.
Chem Sci ; 15(17): 6331-6348, 2024 May 01.
Article En | MEDLINE | ID: mdl-38699265

Self-assembly through dynamic covalent chemistry (DCC) can yield a range of multi-component organic assemblies. The reversibility and dynamic nature of DCC has made prediction of reaction outcome particularly difficult and thus slows the discovery rate of new organic materials. In addition, traditional experimental processes are time-consuming and often rely on serendipity. Here, we present a streamlined hybrid workflow that combines automated high-throughput experimentation, automated data analysis, and computational modelling, to accelerate the discovery process of one particular subclass of molecular organic materials, porous organic cages. We demonstrate how the design and implementation of this workflow aids in the identification of organic cages with desirable properties. The curation of a precursor library of 55 tri- and di-topic aldehyde and amine precursors enabled the experimental screening of 366 imine condensation reactions experimentally, and 1464 hypothetical organic cage outcomes to be computationally modelled. From the screen, 225 cages were identified experimentally using mass spectrometry, 54 of which were cleanly formed as a single topology as determined by both turbidity measurements and 1H NMR spectroscopy. Integration of these characterisation methods into a fully automated Python pipeline, named cagey, led to over a 350-fold decrease in the time required for data analysis. This work highlights the advantages of combining automated synthesis, characterisation, and analysis, for large-scale data curation towards an accessible data-driven materials discovery approach.

2.
Nat Comput Sci ; 4(3): 161-162, 2024 Mar.
Article En | MEDLINE | ID: mdl-38459271
3.
Cryst Growth Des ; 23(12): 8909-8917, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38076527

Chiral π-conjugated organic molecules hold potential for emerging technologies as they are capable of introducing novel functionalities into electronic devices owing to their strong chiroptical properties. However, capitalizing on chiral molecules for electronic devices is reliant on their molecular packing-a factor that impacts their charge-transport properties. The solid-state behavior of molecules is sensitive to subtle differences in molecular interactions, chirality, and shape, but these relationships are not fully understood. Here, we employ crystal structure prediction (CSP) as a tool to probe the lattice-energy landscape for a family of chiral organic molecules: [n]helicenes, where n ranges from 3 to 12. Our results show excellent agreement between the CSP landscapes and experimentally reported structures. By analyzing the packing motifs within the polymorph landscapes, we begin to develop an understanding of how helicene length affects the shape and π-π stacking interactions seen in the polymorphs. Furthermore, we propose how helicene length can be used as a tool to design new functional organic electronics.

4.
Digit Discov ; 2(6): 1925-1936, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38054102

Porous organic cages (POCs) are a class of porous molecular materials characterised by their tunable, intrinsic porosity; this functional property makes them candidates for applications including guest storage and separation. Typically formed via dynamic covalent chemistry reactions from multifunctionalised molecular precursors, there is an enormous potential chemical space for POCs due to the fact they can be formed by combining two relatively small organic molecules, which themselves have an enormous chemical space. However, identifying suitable molecular precursors for POC formation is challenging, as POCs often lack shape persistence (the cage collapses upon solvent removal with loss of its cavity), thus losing a key functional property (porosity). Generative machine learning models have potential for targeted computational design of large functional molecular systems such as POCs. Here, we present a deep-learning-enabled generative model, Cage-VAE, for the targeted generation of shape-persistent POCs. We demonstrate the capacity of Cage-VAE to propose novel, shape-persistent POCs, via integration with multiple efficient sampling methods, including Bayesian optimisation and spherical linear interpolation.

5.
Chem Sci ; 14(44): 12506-12517, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-38020374

Cages are macrocyclic structures with an intrinsic internal cavity that support applications in separations, sensing and catalysis. These materials can be synthesised via self-assembly of organic or metal-organic building blocks. Their bottom-up synthesis and the diversity in building block chemistry allows for fine-tuning of their shape and properties towards a target property. However, it is not straightforward to predict the outcome of self-assembly, and, thus, the structures that are practically accessible during synthesis. Indeed, such a prediction becomes more difficult as problems related to the flexibility of the building blocks or increased combinatorics lead to a higher level of complexity and increased computational costs. Molecular models, and their coarse-graining into simplified representations, may be very useful to this end. Here, we develop a minimalistic toy model of cage-like molecules to explore the stable space of different cage topologies based on a few fundamental geometric building block parameters. Our results capture, despite the simplifications of the model, known geometrical design rules in synthetic cage molecules and uncover the role of building block coordination number and flexibility on the stability of cage topologies. This leads to a large-scale and systematic exploration of design principles, generating data that we expect could be analysed through expandable approaches towards the rational design of self-assembled porous architectures.

6.
Nat Mater ; 22(12): 1540-1547, 2023 Dec.
Article En | MEDLINE | ID: mdl-37845319

The thermal distillation of crude oil mixtures is an energy-intensive process, accounting for nearly 1% of global energy consumption. Membrane-based separations are an appealing alternative or tandem process to distillation due to intrinsic energy efficiency advantages. We developed a family of spirocyclic polytriazoles from structurally diverse monomers for membrane applications. The resulting polymers were prepared by a convenient step-growth method using copper-catalysed azide-alkyne cycloaddition, providing very fast reaction rates, high molecular weights and solubilities in common organic solvents and non-interconnected microporosity. Fractionation of whole Arabian light crude oil and atmospheric tower bottom feeds using these materials enriched the low-boiling-point components and removed trace heteroatom and metal impurities (comparable performance with the lighter feed as the commercial polyimide, Matrimid), demonstrating opportunities to reduce the energy cost of crude oil distillation with tandem membrane processes. Membrane-based molecular separation under these demanding conditions is made possible by high thermal stability and a moderate level of dynamic chain mobility, leading to transient interconnections between micropores, as revealed by the calculations of static and swollen pore structures.

7.
Angew Chem Int Ed Engl ; 62(51): e202315451, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37888946

Metal-organic cages (MOCs) are popular host architectures assembled from ligands and metal ions/nodes. Assembling structurally complex, low-symmetry MOCs with anisotropic cavities can be limited by the formation of statistical isomer libraries. We set out to investigate the use of primary coordination-sphere engineering (CSE) to bias isomer selectivity within homo- and heteroleptic Pdn L2n cages. Unexpected differences in selectivities between alternative donor groups led us to recognise the significant impact of the second coordination sphere on isomer stabilities. From this, molecular-level insight into the origins of selectivity between cis and trans diastereoisomers was gained, highlighting the importance of both host-guest and host-solvent interactions, in addition to ligand design. This detailed understanding allows precision engineering of low-symmetry MOC assemblies without wholesale redesign of the ligand framework, and fundamentally provides a theoretical scaffold for the development of stimuli-responsive, shape-shifting MOCs.

8.
Nat Rev Chem ; 7(8): 527-528, 2023 Aug.
Article En | MEDLINE | ID: mdl-37488249
9.
Adv Sci (Weinh) ; 10(20): e2206888, 2023 Jul.
Article En | MEDLINE | ID: mdl-37178400

Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems.

10.
Chem Commun (Camb) ; 59(45): 6909-6912, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37199452

We examined the effect of two different types of linker distribution-random or correlated distribution-on the pore size and shape within single-layers of three multi-component COFs. We reveal a relationship between linker distribution and the porosity of COF solid solutions. The methods presented in this paper are generalisable and could be used in further studies to examine the properties of disordered framework materials.

11.
Chem Commun (Camb) ; 59(25): 3731-3734, 2023 Mar 23.
Article En | MEDLINE | ID: mdl-36896582

The synthesis of a new porous organic cage decorated with isopropyl moieties (CC21) was achieved from the reaction of triformylbenzene and an isopropyl functionalised diamine. Unlike structurally analogous porous organic cages, its synthesis proved challenging due to competitive aminal formation, rationalised using control experiments and computational modelling. The use of an additional amine was found to increase conversion to the desired cage.

12.
R Soc Open Sci ; 10(2): 220813, 2023 Feb.
Article En | MEDLINE | ID: mdl-36778946

Porous molecular materials are constructed from molecules that assemble in the solid-state such that there are cavities or an interconnected pore network. It is challenging to control the assembly of these systems, as the interactions between the molecules are generally weak, and subtle changes in the molecular structure can lead to vastly different intermolecular interactions and subsequently different crystal packing arrangements. Similarly, the use of different solvents for crystallization, or the introduction of solvent vapour, can result in different polymorphs and pore networks being formed. It is difficult to uniquely describe the pore networks formed, and thus we analyse 1033 crystal structures of porous molecular systems to determine the underlying topology of their void spaces and potential guest diffusion networks. Material-agnostic topology definitions are applied. We use the underlying topological nets to examine whether it is possible to apply isoreticular design principles to porous molecular materials. Overall, our automatic analysis of a large dataset gives a general insight into the relationships between molecular topologies and the topological nets of their pore network. We show that while porous molecular systems tend to pack similarly to non-porous molecules, the topologies of their pore distributions resemble those of more prominent porous materials, such as metal-organic frameworks and covalent organic frameworks.

13.
Adv Mater ; 35(12): e2210098, 2023 Mar.
Article En | MEDLINE | ID: mdl-36634684

Redox flow batteries (RFBs) have great potential for long-duration grid-scale energy storage. Ion-conducting membranes are a crucial component in RFBs, allowing charge-carrying ions to transport while preventing the cross-mixing of redox couples. Commercial Nafion membranes are widely used in RFBs, but their unsatisfactory ionic and molecular selectivity, as well as high costs, limit the performance and the widespread deployment of this technology. To extend the longevity and reduce the cost of RFB systems, inexpensive ion-selective membranes that concurrently deliver low ionic resistance and high selectivity toward redox-active species are highly desired. Here, high-performance RFB membranes are fabricated from blends of carboxylate- and amidoxime-functionalized polymers of intrinsic microporosity, which exploit the beneficial properties of both polymers. The enthalpy-driven formation of cohesive interchain interactions, including hydrogen bonds and salt bridges, facilitates the microscopic miscibility of the blends, while ionizable functional groups within the sub-nanometer pores allow optimization of membrane ion-transport functions. The resulting microporous membranes demonstrate fast cation conduction with low crossover of redox-active molecular species, enabling improved power ratings and reduced capacity fade in aqueous RFBs using anthraquinone and ferrocyanide as redox couples.

14.
Angew Chem Int Ed Engl ; 62(10): e202217987, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36637345

We derive design principles for the assembly of rectangular tetramines into Zn8 L6 pseudo-cubic coordination cages. Because of the rectangular, as opposed to square, geometry of the ligand panels, and the possibility of either Δ or Λ handedness of each metal center at the eight corners of the pseudo-cube, many different cage diastereomers are possible. Each of the six tetra-aniline subcomponents investigated in this work assembled with zinc(II) and 2-formylpyridine in acetonitrile into a single Zn8 L6 pseudo-cube diastereomer, however. Each product corresponded to one of four diastereomeric configurations, with T, Th , S6 or D3 symmetry. The preferred diastereomer for a given tetra-aniline subcomponent was shown to be dependent on its aspect ratio and conformational flexibility. Analysis of computationally modeled individual faces or whole pseudo-cubes provided insight as to why the observed diastereomers were favored.

15.
Chem Sci ; 13(45): 13588-13599, 2022 Nov 23.
Article En | MEDLINE | ID: mdl-36507173

How molecules pack has vital ramifications for their applications as functional molecular materials. Small changes in a molecule's functionality can lead to large, non-intuitive, changes in their global solid-state packing, resulting in difficulty in targeted design. Predicting the crystal structure of organic molecules from only their molecular structure is a well-known problem plaguing crystal engineering. Although relevant to the properties of many organic molecules, the packing behaviour of modular porous materials, such as porous organic cages (POCs), greatly impacts the properties of the material. We present a novel way of predicting the solid-state phase behaviour of POCs by using a simplistic model containing the dominant degrees of freedom driving crystalline phase formation. We employ coarse-grained simulations to systematically study how chemical functionality of pseudo-octahedral cages can be used to manipulate the solid-state phase formation of POCs. Our results support those of experimentally reported structures, showing that for cages which pack via their windows forming a porous network, only one phase is formed, whereas when cages pack via their windows and arenes, the phase behaviour is more complex. While presenting a lower computational cost route for predicting molecular crystal packing, coarse-grained models also allow for the development of design rules which we start to formulate through our results.

16.
Chem Sci ; 13(38): 11368-11375, 2022 Oct 05.
Article En | MEDLINE | ID: mdl-36320581

Maintaining close spatial proximity of functional moieties within molecular systems can result in fascinating emergent properties. Whilst much work has been done on covalent tethering of functional units for myriad applications, investigations into mechanically linked systems are relatively rare. Formation of the mechanical bond is usually the final step in the synthesis of interlocked molecules, placing limits on the throughput of functionalised architectures. Herein we present the synthesis of a bis-azide [2]catenane scaffold that can be post-synthetically modified using CuAAC 'click' chemistry. In this manner we have been able to access functionalised catenanes from a common precursor and study the properties of electrochemically active, emissive and photodimerisable units within the mechanically interlocked system in comparison to non-interlocked analogues. Our data demonstrates that the greater (co-)conformational flexibility that can be obtained with mechanically interlocked systems compared to traditional covalent tethers paves the way for developing new functional molecules with exciting properties.

17.
Chem Sci ; 13(40): 11912-11917, 2022 Oct 19.
Article En | MEDLINE | ID: mdl-36320919

Cuboctahedral coordination cages of the general formula [Pd12L24]24+ (L = low-symmetry ligand) were analyzed theoretically and experimentally. With 350 696 potential isomers, the structural space of these assemblies is vast. Orientational self-sorting refers to the preferential formation of particular isomers within the pool of potential structures. Geometric and computational analyses predict the preferred formation of cages with a cis arrangement at the metal centers. This prediction was corroborated experimentally by synthesizing a [Pd12L24]24+ cage with a bridging 3-(4-(pyridin-4-yl)phenyl)pyridine ligand. A crystallographic analysis of this assembly showed exclusive cis coordination of the 3- and the 4-pyridyl donor groups at the Pd2+ ions.

18.
Nat Chem ; 14(12): 1383-1389, 2022 12.
Article En | MEDLINE | ID: mdl-36302869

Chiral π-conjugated molecules bring new functionality to technological applications and represent an exciting, rapidly expanding area of research. Their functional properties, such as the absorption and emission of circularly polarized light or the transport of spin-polarized electrons, are highly anisotropic. As a result, the orientation of chiral molecules critically determines the functionality and efficiency of chiral devices. Here we present a strategy to control the orientation of a small chiral molecule (2,2'-dicyano[6]helicene) by the use of organic and inorganic templating layers. Such templating layers can either force 2,2'-dicyano[6]helicene to adopt a face-on orientation and self-assemble into upright supramolecular columns oriented with their helical axis perpendicular to the substrate, or an edge-on orientation with parallel-lying supramolecular columns. Through such control, we show that low- and high-energy chiroptical responses can be independently 'turned on' or 'turned off'. The templating methodologies described here provide a simple way to engineer orientational control and, by association, anisotropic functional properties of chiral molecular systems for a range of emerging technologies.


Electrons , Anisotropy
19.
J Am Chem Soc ; 144(41): 18730-18743, 2022 10 19.
Article En | MEDLINE | ID: mdl-36206484

Novel functional materials are urgently needed to help combat the major global challenges facing humanity, such as climate change and resource scarcity. Yet, the traditional experimental materials discovery process is slow and the material space at our disposal is too vast to effectively explore using intuition-guided experimentation alone. Most experimental materials discovery programs necessarily focus on exploring the local space of known materials, so we are not fully exploiting the enormous potential material space, where more novel materials with unique properties may exist. Computation, facilitated by improvements in open-source software and databases, as well as computer hardware has the potential to significantly accelerate the rational development of materials, but all too often is only used to postrationalize experimental observations. Thus, the true predictive power of computation, where theory leads experimentation, is not fully utilized. Here, we discuss the challenges to successful implementation of computation-driven materials discovery workflows, and then focus on the progress of the field, with a particular emphasis on the challenges to reaching novel materials.


Software , Technology
20.
Ann N Y Acad Sci ; 1518(1): 106-119, 2022 12.
Article En | MEDLINE | ID: mdl-36251351

Computational modeling is increasingly used to assist in the discovery of supramolecular materials. Supramolecular materials are typically primarily built from organic components that are self-assembled through noncovalent bonding and have potential applications, including in selective binding, sorption, molecular separations, catalysis, optoelectronics, sensing, and as molecular machines. In this review, the key areas where computational prediction can assist in the discovery of supramolecular materials, including in structure prediction, property prediction, and the prediction of how to synthesize a hypothetical material are discussed, before exploring the potential impact of artificial intelligence techniques on the field. Throughout, the importance of close integration with experimental materials discovery programs will be highlighted. A series of case studies from the author's work across some different supramolecular material classes will be discussed, before finishing with a discussion of the outlook for the field.


Artificial Intelligence , Humans , Catalysis , Computer Simulation
...